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Società Italiana di Fisica
Springer-Verlag 2001

Double jumps and transition rates for two dipole-interacting
atoms

S.U. Addicks1, A. Beige2, M. Dakna1,a, and G.C. Hegerfeldt1

1 Institut für Theoretische Physik, Universität Göttingen, Bunsenstr. 9, 73073 Göttingen, Germany
2 Optics Section, Blackett Laboratory, Imperial College London, London SW7 2BZ, UK

Received 19 March 2001 and Received in final form 13 June 2001

Abstract. Cooperative effects in the fluorescence of two dipole-interacting atoms, with macroscopic quan-
tum jumps (light and dark periods), are investigated. The transition rates between different intensity
periods are calculated in closed form and are used to determine the rates of double jumps between periods
of double intensity and dark periods, the mean duration of the three intensity periods and the mean rate
of their occurrence. We predict, to our knowledge for the first time, cooperative effects for double jumps,
for atomic distances from one and to ten wave lengths of the strong transition. The double jump rate, as a
function of the atomic distance, can show oscillations of up to 30% at distances of about a wave length, and
oscillations are still noticeable at a distance of ten wave lengths. The cooperative effects of the quantities
and their characteristic behavior turn out to be strongly dependent on the laser detuning.

PACS. 42.50.Ar Photon statistics and coherence theory – 42.50.Fx Cooperative phenomena; superradiance
and superfluorescence

1 Introduction

The dipole-dipole interaction between two atoms can be
understood through the exchange of virtual photons and
depends on the transition dipole moment of the levels in-
volved. It can be characterized by complex coupling con-
stants, or by their real and imaginary parts, where the
former affect decay constants and the latter lead to level
shifts [1]. Cooperative effects in the radiative behavior of
atoms which may arise from their mutual dipole-dipole
interaction have attracted considerable interest in the lit-
erature [1–35]. Two of the present authors [36] have in-
vestigated in detail the transition from anti-bunching to
bunching with decreasing atomic distance for two dipole-
dipole interacting two-level atoms.

The striking phenomenon of macroscopic quantum
jumps (electron shelving or macroscopic dark and light
periods) can occur for a multi-level system where the elec-
tron is essentially shelved for seconds or even minutes in
a metastable state without photon emissions [37–46]. For
two such systems the fluorescence behavior would, without
cooperative effects, be just the sum of the separate photon
emissions, with dark periods of both atoms, light periods
of a single atom and of two atoms. Quite recently, two of
the present authors [47] investigated for two such systems
cooperative effects in the mean duration, T0, T1, and T2,
of the dark, single-intensity, and double-intensity periods,
respectively. This was done by simulations for two atoms
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Fig. 1. V system with metastable level 2 and Einstein coeffi-
cient A3 for level 3. Ω2 and Ω3 are the Rabi frequencies of the
two lasers driving the weak 1–2 transition and the strong 1–3
transition, respectively.

in a V configuration (see Fig. 1). The mean duration of the
single- and double-intensity periods depended sensitively
on the dipole-dipole interaction and thus on the atomic
distance r. The mean durations exhibited noticeable os-
cillations which decreased in amplitude when r increased.
These oscillations seemed to continue up to a distance of
well over five wave lengths of the strong transition and
they were opposite in phase with those of ReC3(r), where
C3 is the complex dipole-dipole coupling constant associ-
ated with the strong transitions.

In this paper we present an analytic approach to study
cooperative effects for atoms with macroscopic quan-
tum jumps. This is explained for two atoms in the V
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configuration, but easily generalizes to more atoms and
other configurations. The approach is based on an explicit
calculation of transition rates between the various inten-
sity periods. From the transition rates all interesting sta-
tistical quantities can be determined, such as the mean
duration of different periods and double jump rates, i.e.
jumps by two or three intensity steps within a short reso-
lution time.

We predict, to our knowledge for the first time, co-
operative effects in the double jumps of two dipole-dipole
interacting atoms in the V configuration and verify the an-
alytical results by simulations. As a function of the atomic
distance, the double jump rates show marked oscillations,
with a maximal difference of up to 30%, decreasing as 1/r.
Most surprising is a change in the oscillatory behavior of
the double jump rate from in phase with ReC3(r) to op-
posite in phase when the detuning of the laser driving the
weak atomic transition is increased. For the mean dura-
tions T1 and T2 there can be a change in behavior from
opposite in phase to in phase with ReC3(r). Moreover, for
a particular value of the detuning, which depends on the
other parameters, the double jump rate becomes constant
in r and the cooperative effects disappear. This is true
also for the mean period durations and for their mean oc-
currences, with different values of the detuning, though.
Typically, for nonzero detuning the oscillation amplitudes
do not exceed those found for zero detuning.

The plan of the paper is as follows. In Section 2 the
fluorescence with its three different intensity periods is
treated as a three-step telegraph process and the Bloch
equations are used to derive the transition rates between
the periods. In Sections 3 and 4 expressions for the dou-
ble jump rate and the mean duration of the three types
of intensity periods are obtained by means of these tran-
sition rates. The results are compared with simulations in
which photon intensities are obtained by averaging pho-
ton numbers over a small time window. It turns out that
this data-smoothing procedure can affect the results, and
we show how this can be corrected for quantitatively. A
similar effect can also occur when photon detectors mea-
sure the intensity of light by averaging over a small time
window. In the last section the results are discussed. It is
suggested that the mean rate of double-intensity periods is
an experimentally more easily accessible candidate for ex-
hibiting cooperative effects arising from the dipole-dipole
interaction.

2 Transition rates

2.1 Prerequisites

We consider two atoms, at a fixed distance r, each a V
configuration as shown in Figure 1. We assume the laser
radiation normal to this line, and for the Einstein coeffi-
cients, the Rabi frequencies and the detuning we assume
the relations

Ω2 � Ω3, Ω2 � Ω2
3/A3, A2 ≈ 0, ∆3 = 0, (1)

Fig. 2. Dicke states and levels for zero detunings. Simple ar-
rows denote decays. Solid and dashed double arrows denote
strong and weak driving, respectively. Nonzero detunings re-
sult in a level shift.

∆2 arbitrary.
The Dicke states are defined as

|g〉 = |1〉|1〉, |e2〉 = |2〉|2〉, |e3〉 = |3〉|3〉
|sjk〉 = {|j〉|k〉+ |j〉|k〉}/

√
2

i|ajk〉 = {|j〉|k〉 − |j〉|k〉}/
√

2.

They are symmetric and antisymmetric, respectively, un-
der permutation of the two atoms. The Dicke states and
the possible transitions are displayed in Figure 2. Solid
single and double arrows indicate decay and strong driv-
ing by laser 3, respectively, while dashed double arrows
indicate the weak driving by laser 2. For Ω2 = 0, i.e. with
the dashed arrows absent, the states decompose into three
non-connected subsets, namely |e2〉, the four states of the
inner ring and the four states of the outer ring in Fig-
ure 2, and the subspaces spanned by these states will be
denoted by dark, inner, and outer subspace, respectively.
As in reference [47] they will be associated in the following
with the fluorescence periods of intensity 0, 1, and 2:

dark state: |e2〉 (2)
inner states (intensity 1): |s12〉, |s23〉, |a12〉, |a23〉 (3)
outer states (intensity 2): |g〉, |s13〉, |e3〉, |a13〉· (4)

The weak laser will lead to slow transitions between the
subspaces.

The Bloch equations can be obtained by standard pro-
cedures as described, e.g., in [1]. With the conditional
Hamiltonian Hcond and the reset operation R of Ap-
pendix A, the Bloch equations can be written in the com-
pact form

ρ̇ = − i
~

[
Hcondρ− ρH†cond

]
+R(ρ). (5)

The operator Hcond is of the form

Hcond = H0
cond +H1

cond(Ω2) (6)
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where the operator H0
cond depends on Ω3 and on the

dipole-dipole coupling constant C3(r), while H1
cond is lin-

ear in Ω2 and does not depend on C3 and Ω3. The super-
operator R depends on C3.

2.2 Intensity periods and subspaces

For a single atom as in Figure 1, with macroscopic light
and dark periods, the stochastic sequence of individual
photon emissions can be directly analyzed by the quan-
tum jump approach [48–54], using the existence of differ-
ent time scales. To high precision it yields a telegraph pro-
cess and the transition rates between the periods [55,56].
A more heuristic approach assumes that during a light pe-
riod the density matrix of the atom lies in the subspace
spanned by |1〉 and |3〉 and that during a dark period the
state is given by |2〉 [42]. One can then use the Bloch equa-
tions to calculate the build-up, during a time ∆t, of a pop-
ulation outside the respective subspace and obtains from
this the probability of leaving the subspace. This proba-
bility is then interpreted as the transition probability from
one period to the other. The results agree with those of the
more microscopic quantum jump approach [46,48,49,57].

This idea will be used here for two dipole-interacting
V systems. We associate each of the three types of flu-
orescence periods with one of the subspaces spanned by
the states in equations (2–4) and model transitions be-
tween periods as transitions between the corresponding
subspaces. Without dipole interaction this is the same as-
sumption as for a single atom, and with the interaction
it has been tested numerically in reference [58] to hold as
long as the atomic separation is larger than a third wave-
length of the strong transition. The reason for this is the
divergence of ImC3 for decreasing atomic distance (cf. the
expression for C3, Eq. (A.1) in Appendix A).

Thus, at a particular time t0, the density matrix ρ(t0)
of the two atoms is assumed to lie in one of the subspaces.
Then, during a short time ∆t, satisfying

Ω−1
3 , A−1

3 � ∆t� Ω−1
2 , (7)

the system will go over to a density matrix ρ(t0 + ∆t)
which contains small populations in the other subspaces,
due to the driving by Ω2 6= 0. The time derivatives of
these populations at t0 + ∆t give the transition rates to
these subspaces because, as shown in Appendix B, they
are independent of the particular choice of ∆t and of the
particular density matrix ρ(t0), as long as equation (7)
is fulfilled. These rates can be interpreted as transition
rates between corresponding intensity periods, just as in
the one-atom case.

A straightforward calculation using equation (5) yields
the exact relations

d
dt

∑
outer

〈outer|ρ|outer〉 =

Ω2Im
{√

2〈s12|ρ|g〉+ 〈s23|ρ|s13〉+ 〈a23|ρ|a13〉
}

(8)

d
dt
〈e2|ρ|e2〉 =

√
2Ω2Im〈s12|ρ|e2〉 (9)

d
dt

∑
inner

〈inner|ρ|inner〉 =

− d
dt

{
〈e2|ρ|e2〉+

∑
outer

〈outer|ρ|outer〉
}

(10)

where |outer〉 stands for |g〉, |s13〉, |e3〉, |a13〉 and |inner〉
for |s12〉, |s23〉, |a12〉, |a23〉. Thus one has to calculate the
coherences on the right-hand side at time t0 +∆t to first
order in Ω2, with the appropriate initial condition at time
t0, to obtain the transition rate to second order in Ω2.

If ρ(t0) lies in one of the above subspaces then by time
t0 + ∆t the system has reached a quasi-stationary state
satisfying

ρ̇(t0 +∆t) = 0 to first order in Ω2, (11)

as shown in Appendix B. This is also true for a single atom
and is the decisive equation.

To obtain from this the coherences to first order in Ω2

we write
ρ(t0 +∆t) = ρ0 + ρ1 + · · ·

where ρk is of order Ωk2 . Putting ρ̇ = 0 in equation (5) and
inserting the expansion for ρ one obtains in zeroth order

0 = − i
~

[
H0

condρ
0 − ρ0H0 †

cond

]
+R(ρ0) (12)

and in first order in Ω2

0 = − i
~

[
H0

condρ
1 − ρ1H0 †

cond +H1
condρ

0 − ρ0H1 †
cond

]
+R(ρ1). (13)

Thus ρ0 is an equilibrium state for Ω2 = 0, taken to lie
in the appropriate subspace. For the dark state and the
subspace spanned by the inner states one has

ρ0 ≡ ρ0
dark = |e2〉〈e2| (14)

ρ0 ≡ ρ0
inner =

1
2

{
ρ(A)

ss ⊗ |2〉〈2|+ |2〉〈2| ⊗ ρ(B)
ss

}
=

1
4
A2

3 +Ω2
3

A2
3 + 2Ω2

3

{
|s12〉〈s12|+ |a12〉〈a12|

}
+

1
4

Ω2
3

A2
3 + 2Ω2

3

{
|s23〉〈s23|+ |a23〉〈a23|

}
+

i
2

Ω3A3

A2
3 + 2Ω2

3

{
|s12〉〈s23| − |a12〉〈a23|

}
+ h.c. (15)

by symmetry, independently of C3, where ρ(A,B)
ss are the

steady states of the individual atoms in the 1–3 subspace
(for Ω2 = 0 and C3 = 0). For the subspace spanned by
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the outer states one calculates

ρ0≡ρ0
outer ∝

[{(
A2

3+Ω2
3

)2
+A2

3 |C3|2+2A3
3 ReC3

}
|g〉〈g|

+
{

i
√

2A3 Ω3

(
A2

3 +Ω4
3 +A3C3

)
|g〉〈s13|+ h.c.

}
−
{
A3Ω

2
3 (A3 + C3) |g〉〈e3|+ h.c.

}
+Ω2

3

(
2A2

3 +Ω2
3

)
|s13〉〈s13|+Ω4

3 {|e3〉〈e3|+ |a13〉〈a13|}

+
{

i
√

2A3 Ω
3
3 |s13〉〈e3|+ h.c.

}]
· (16)

One checks that for C3 = 0 this becomes ρ0
outer ∝ ρ

(A)
ss ⊗

ρ
(B)
ss , the expression for two independent atoms.

We will denote the transition rates between the sub-
spaces by pij . Here i, j = 0, 1, 2 refer to the dark, inner
and outer subspace, respectively, (and thus to the corre-
sponding intensities). The pij will be determined to second
order in Ω2. As expected, p02 and p20 will turn out to be
zero. Physically this means that in our formulation there
are no direct transitions from a period of intensity 2 to a
dark period or vice versa.

2.3 Calculation of p12

We start from ρ0 = ρ0
inner in equation (15) as initial state.

For the the transition rate p12 to the outer subspace one
needs, in view of equation (8), three coherences of ρ1 be-
tween the inner and outer subspace. To obtain these we
write

{|xi〉} = {|s12〉, |s23〉, |a12〉, |a23〉} (inner states)

and

{|yj〉} = {|g〉, |s13〉, |e3〉, |a13〉} (outer states)

for the corresponding bases and decompose

ρ1 =
∑
i,j

ρ1
ij |xi〉〈yj |+ ρ1∗

ij |yj〉〈xi|+ other terms. (17)

Inserting this into equation (13) and taking matrix ele-
ments with 〈xi0 | on the left and |yj0〉 on the right gives

0 =
i
~
〈xi0 |ρ0

innerH
1 †
cond|yj0〉 −

i
~
∑
i

ρ1
ij0 〈xi0 |H

0
cond|xi〉

+
i
~
∑
j

ρ1
i0j 〈yj|H

0 †
cond|yj0〉

+
∑
i,j

(A3 + ReC3) ρ1
ij〈xi0 |R+|xi〉〈yj |R†+|yj0〉

+
∑
i,j

(A3 −ReC3) ρ1
ij〈xi0 |R−|xi〉〈yj |R†−|yj0〉· (18)

This is a system of 16 linear equations for the 16 coher-
ences ρ1

ij , of which only three are needed in equation (8).
Due to the symmetry of Hcond and R+ and antisymme-
try of R− under the interchange of the two atoms, the

system decouples. Taking for |xi0〉 and |yj0〉 either both
symmetric or both antisymmetric states and putting the
eight coherences into the column vector

ρ̃ ≡
(
ρ1
s12g, ρ

1
s12s13

, ρ1
s12e3 , ρ

1
s23g, ρ

1
s23s13

, ρ1
s23e3 ,

ρ1
a12a13

, ρ1
a23a13

)T
(19)

one obtains the equation

(A− i∆21) ρ̃ = a1 (20)

with A and a1 given in Appendix C in equa-
tions (C.1, C.2), respectively.

Inverting the 8×8 matrix A− i∆21 by Maple yields ρ̃
and the coherences. The result is complicated and not il-
luminating. Inserting the required coherences into equa-
tion (8) one obtains, to first order in ReC3 and ImC3 and
to second order in Ω2,

p12 = Ω2
2

{
A3Ω

2
3

Ω4
3 − 8∆2

2Ω
2
3 + 4A2

3∆
2
2 + 16∆4

2

+ ReC3(r)
2A2

3Ω
2
3

(
Ω4

3−4A2
3∆

2
2−16∆4

2

)
(A2

3+2Ω2
3) (Ω4

3−8∆2
2Ω

2
3 +4A2

3∆
2
2+16∆4

2)2

}
.

(21)

Note that only ReC3 appears and that the terms linear
in ImC3 have canceled.

2.4 Calculation of p10

To determine p10 we use equation (9) and start again from
ρ0 = ρ0

inner as initial condition in equation (13), but now
have to determine 〈s12|ρ1|e2〉. Replacing {|yi〉} by |e2〉 and
choosing |xi0〉 = |s12〉, |s23〉 in equation (18), one obtains
two inhomogeneous linear equations for 〈s12|ρ1|e2〉 and
〈s23|ρ1|e2〉. These equations do not depend on C3, since
R± and R†± vanish on |e2〉 and since C3 does not appear
in the part of Hcond acting on the inner states. Therefore
〈s12|ρ1|e2〉 and 〈s23|ρ1|e2〉 are independent of C3. By a
simple calculation one obtains 〈s12|ρ1|e2〉 and inserting
this into equation (9) yields, to second order in Ω2,

p10 = Ω2
2

A3Ω
2
3

(
A2

3 + 4∆2
2

)
(A2

3 + 2Ω2
3)
[
(Ω2

3 − 4∆2
2)2 + 4∆2

2A
2
3

] · (22)

This is independent of C3 and is the same as for two in-
dependent atoms, namely the transition rate for a single
atom from a light to a dark period [49].

2.5 Calculation of p01

To determine p01 we use equation (10). One also needs
〈s12|ρ1|e2〉, as seen from equation (9), but in this case one
has to start from ρ0 = ρ0

dark as initial condition in equa-
tion (13). Therefore one obtains the same equations for
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p21 = Ω2
2

(
2A3Ω

2
3

�
A2

3 + 4∆2
2

�
(Ω4

3 − 8∆2
2Ω

2
3 + 16∆4

2 + 4A2
3∆

2
2) (A2

3 + 2Ω2
3)

+ReC3(r)
4A2

3Ω
2
3

�
A4

3Ω
4
3 + 4A2

3Ω
6
3 − 12A2

3∆
2
2Ω

4
3 − 64A2

3∆
6
2 − 4A6

3∆
2
2 − 32A4

3∆
4
2 − 64∆4

2Ω
4
3 + 16∆2

2Ω
6
3

�
(A2

3 + 2Ω2
3)3 (Ω4

3 − 8∆2
2Ω

2
3 + 4A2

3∆
2
2 + 16∆4

2)2

)
(24)

〈s12|ρ1|e2〉 and 〈s23|ρ1|e2〉 as before, except for the inho-
mogeneous part. One has independence of C3 and easily
solves for 〈s12|ρ1|e2〉.

For the remaining coherences needed in equation (10),
i.e. those in equation (8), one obtains the same form as
in equation (20), with the same A, but now with a1 =
0 since the term containing ρ0 vanishes. Therefore these
coherences vanish here and hence p02 = 0. Physically this
means that in our formulation of the problem there are
no direct transitions from a dark period to a period of
intensity 2.

From equation (10) one now obtains, to second order
in Ω2,

p01 = 2Ω2
2

A3Ω
2
3

(Ω2
3 − 4∆2

2)2 + 4∆2
2A

2
3

· (23)

This is independent of C3 and is the same as for two in-
dependent atoms, namely twice the transition rate for a
single atom from a dark to a light period.

2.6 Calculation of p21

The transition rate p21 is obtained from equation (10)
and the required coherences are again those appearing in
equations (8, 9), now with ρ0 = ρ0

outer as initial condition.
For 〈s12|ρ1|e2〉 and 〈s23|ρ1|e2〉 one obtains the same two
equations as before, except for the inhomogeneous part
which now vanishes. Hence these two coherences vanish
now and as a consequence p20 = 0. For the coherences in
equation (19) one has the same equation as equation (20),
with the same matrix A but with a1 replaced by a2 as
given by equation (C.3) in Appendix C.

Inserting the resulting coherences into equation (10)
gives, to first order in ReC3 and ImC3 and to second
order in Ω2,

see equation (24) above

where again the terms containing ImC3 have canceled.

2.7 Discussion

If one computes the coherences in equations (8, 10) to sec-
ond order in C3 one obtains p12 and p21 to second order
in C3. The resulting expressions are not enlightening and
therefore not given here, but they do depend on (ImC3)2.
Figure 3 shows how small the second-order dipole-dipole
contribution to p21 is for the parameters of the simula-
tions and for distances larger than half a wave length. For

0

0.0002

0.0004

0.0006

0.0008

0.001

0 10 20 30 40 50 60

p
ij
[A
3
]

p21 to 1st order in C3

p21 to 2nd order in C3

p12 to 1st order in C3

k31r

Fig. 3. Transition probabilities p21 to first and second order
in C3 and p21 to first order, for Ω3 =0.5A3, Ω2 =0.01A3, zero
detuning. The contribution to p21 arising from the second order
in C3 is small.

smaller distances the results are probably not applicable
anyway, as discussed in reference [47].

For ∆2 = 0 the rates p12 and p21 simplify to

p12 = Ω2
2

{
A3

Ω2
3

+ ReC3(r)
2A2

3

Ω2
3(A2

3 + 2Ω2
3)

}
(25)

p21 = Ω2
2

{
2A3

3

Ω2
3 (A2

3+2Ω2
3)

+ReC3(r)
4A4

3

(
A2

3+4Ω2
3

)
Ω2

3(A2
3+2Ω2

3)3

}
(26)

and one sees that the coefficients of the ReC3 term in
equations (25, 26) are positive. For ∆2 = 0, therefore,
p12 and p21 vary with the atomic distance in phase with
ReC3. For ∆2 6= 0, however, the coefficients of ReC3 in
equations (21) or (24) can become zero or negative. In the
first case p12 or p21 become constant in r, while in the
second case they vary opposite in phase to ReC3.

It will be shown in the next sections that this depen-
dence of p12 and p21 on the detuning of the weak laser
entails a corresponding behavior of the double jump rate
and an opposite behavior of the mean durations T1 and T2.
This opposite behavior of T1 and T2 is easy to understand
since they are related to the inverse of the transition rates.
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3 Double jumps: Comparison of simulations
with theory

A double jump is defined as a transition from a double-
intensity period to dark period, or vice versa, within a
prescribed time interval ∆TDJ. Now, to distinguish differ-
ent periods in experiments and in simulations one has to
use an average photon intensity, obtained e.g. by means
of averaging over a time window. This window has to be
large enough to contain enough emissions, but must not
be too large in order not to overlook too many short peri-
ods. Our simulations employ a procedure similar to that
in reference [47] and use a moving window [59] of fixed
width, denoted by ∆Tw. The time interval ∆TDJ should
be larger than ∆Tw.

We consider the fluorescence periods as a telegraph
process with three steps and use the pij of the last section
as transition rates. At first the influence of the averaging
window Tw will be neglected.

The rate of downward double jumps is obtained as fol-
lows. For i = 0, 1, 2, let ni be the mean number of periods
of intensity i per unit time. For a long path of length T the
total number of periods of intensity i is then Ni(T ) = niT .
At the end of each period of intensity 2 there begins a pe-
riod of intensity 1, and the probability for this period of
intensity 1 to be shorter than ∆TDJ is given by

1− exp {−(p10 + p12)∆TDJ} ·

At the end of a period of intensity 1 the branching ratio
for a transition to a period of intensity 0 is p10/(p10 +p12).
Thus during time T the total number of such downward
double jumps, denoted by N20

DJ(T ), is

N20
DJ(T )=N2(T )

p10

(p10+p12)

{
1− exp

{
− (p10+p12)∆TDJ

}}
and therefore the rate, n20

DJ, of downward double jumps
within ∆TDJ is

n20
DJ =n2

p10

(p10+p12)

{
1− exp

{
− (p10 + p12)∆TDJ

}}
·

(27)

In a similar way one finds that the rate, n02
DJ, of upward

double jumps within ∆TDJ is

n02
DJ =n0

p12

(p10+p12)

{
1− exp {−(p10 + p12)∆TDJ}

}
·

(28)

It remains to determine n0 and n2. Since a period of in-
tensity 1 ends with a transition to a period of either inten-
sity 0 or intensity 2 one has, with the respective branching
ratios,

n0 =
p10

p10 + p12
n1 (29)

n2 =
p12

p10 + p12
n1. (30)
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Fig. 4. Double jump rates. Simulation (+++), theory
(——) (uncorrected for averaging window; ∆TDJ = 684A−1

3 ,
Ω3 =0.5A3, Ω2 =0.01A3, zero detuning).

If one denotes by Ti the mean durations of a period of
intensity i, one has

2∑
i=0

niTi = 1. (31)

Moreover, one has

T0 = 1/p01, T1 = 1/(p10 + p12), T2 = 1/p21 (32)

and this then gives

n0 =
p01p21

p01p21 + p21p10 + p01p12
p10 (33)

n2 =
p01p21

p01p21 + p21p10 + p01p12
p21. (34)

From this, together with equations (27, 28), one sees im-
mediately that the rates of upward and downward double
jumps are equal,

n02
DJ = n20

DJ. (35)

This fact was also observed in the simulations. The com-
bined number of double jumps therefore equals

nDJ ≡ n02
DJ + n20

DJ

= 2
p01p10p12p21

(p01p21 + p21p10 + p01p12)(p01 + p12)

×
{

1− exp{−(p10 + p12)∆TDJ}
}
· (36)

For ∆TDJ � T1 and by expanding the exponential, this
gives for the combined double jump rate, without correc-
tion for the averaging window,

nDJ = 2
p01p10p12p21

p01p21 + p21p10 + p01p12
∆TDJ. (37)

Figure 4 shows a comparison of this result with data from
the simulations. Except for atomic distances less than
about three quarters of the wave length of the strong tran-
sition the agreement appears as quite reasonable, and the
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Fig. 5. As in Figure 4, but theory corrected for averaging
window.

disagreement for small distances is not unexpected since
there the intensities start to decrease and a description
by a telegraph process may be no longer a good approxi-
mation, as pointed out in reference [47]. But one observes
that the theoretical result is systematically above the sim-
ulated curve. This seeming disagreement, however, is eas-
ily explained and can be taken care of as follows.

3.1 Corrections for averaging window

We recall that the simulated data were obtained by aver-
aging the numerical photon emission times with a moving
window of length ∆Tw. Then, roughly, periods which are
shorter than about two thirds of the window length are
overlooked, and therefore the number of recorded (or ob-
served) periods of type 2, which enters equation (27), is
smaller than that given by equation (34). The recorded or
observed number is denoted by n2,cor. It is approximately
given by

n2,cor = n2 exp
{
−p21

2
3
∆Tw

}
, (38)

and this expression should be inserted into equation (27)
for n2. In this way one obtains the corrected theoretical
curve in Figure 5. The curve changes very little if instead
of two thirds one takes 60% or 70% of ∆Tw. It is seen that
the agreement with the simulated data is much improved
for distances greater than three quarters of a wave length
of the strong transition.

It still appears, however, that the oscillation ampli-
tudes of the theoretical curve are somewhat larger than
those of the simulated curve. This is again understandable
as an effect of the averaging procedure. In the simulations
it was noticed numerically that the r dependence of the
double jump rate depended somewhat on the length of the
averaging window Tw and distinct features tended to be
somewhat washed out for larger∆Tw, in particular the os-
cillation amplitudes of the simulated data decreased with
the length of the averaging window. A larger ∆Tw gave a
smoother intensity curve, but made the determination of
the transition times between different periods more diffi-
cult, while a shorter averaging window introduced more
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Fig. 6. Changed oscillatory behavior of the double jump rate
for increased detuning of the weak driving (uncorrected for
averaging window).

noise. We found the use of ∆Tw = 114A−1
3 to be a good

compromise. If it were possible to choose smaller averag-
ing window the amplitudes should increase, as predicted
by the theory.

3.2 Detuning

One can explicitly insert the expressions for pij of the
last section into equation (37), but the result becomes un-
wieldy. One can show that in an expansion of equation (37)
with respect to ReC3 to first order the coefficient of ReC3

is positive for zero detuning. This implies that the dou-
ble jump rate is in phase with ReC3(r) for the atomic
distances under consideration and for zero detuning. For
increasing detuning the double jump rate can become con-
stant in r and then change its oscillatory behavior to that
of −ReC3. An example for the latter is shown in Figure 6.

4 Duration of fluorescence periods:
Effect of averaging window

The mean durations, T0, T1, and T2, of the three periods
were investigated for cooperative effects in reference [47]
by simulations with averaging windows at discrete times.
Here we have performed similar simulations with a moving
averaging window. It turns out that both the present and
the previous simulation for Ti are about 15% higher than
those predicted by equation (32), using the expressions
for pij of Section 2 and without correcting for the use of
the averaging window due to which short periods are not
recorded. We will now show how this can be taken into
account in the theory.

As in Section 3 we consider a three-step telegraph pro-
cess with periods of type 0, 1, and 2, whose mean du-
rations are denoted by T0, T1, and T2, respectively. We
assume that periods of length ∆τ or less are not recorded.
Figure 7 shows periods of type 1 which are interrupted
by a short period of type 0 and 2, respectively. If the
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Fig. 7. If periods of length ∆τ or less are overlooked then the
distribution of the periods is changed.

respective short periods are not recorded, then the two
periods of type 1 in the left part of the figure are recorded
as a single longer period, and similarly for the right part
of the figure. This leads to an apparent decrease of shorter
periods of type 1 and to a corresponding increase of longer
periods.

To make this quantitative we put λi ≡ 1/Ti and de-
note the number per unit time of periods of type i, whose
duration is less than ∆τ , by n∆τi , i.e.

n∆τi = ni
{

1− exp{−λi∆τ}
}
· (39)

Per unit time, one has n∆τ0 occurrences of the situation in
the left part of Figure 7 and n∆τ2 occurrences of that in the
right part. The probability for one of the periods of type
1 in the left or right part of Figure 7 to have a length ly-
ing in the time interval (t1, t1 +dt1) is 2λ1 exp{−λ1t1}dt1,
where the factor of 2 comes from the two possible situa-
tions. Therefore, the recorded number, per unit time, of
periods of type 1 with duration in (t1, t1 + dt1) is changed
(decreased) by

2(n∆τ0 + n∆τ2 )λ1 exp{−λ1t1}dt1. (40)

Similarly, the apparent increase of the number, per unit
time, of periods of type 1 with duration in (t1, t1 +dt1) is,
by Figure 7,

(n∆τ0 + n∆τ2 )
∫ ∫

t1≤t′1+t′′1≤t1+dt1

dt′1dt′′1

× λ1 exp{−λ1t
′
1}λ1 exp{−λ1t

′′
1}

= (n∆τ0 + n∆τ2 )λ2
1t1 exp{−λ1t1}dt1. (41)

Denoting by ν1rec(t1)dt1 the actually recorded number,
per unit time, of periods of type 1 with duration in (t1, t1+
dt1) one obtains from the two previous expressions

ν1rec(t1)dt1 = n1λ1 exp{−λ1t1}dt1
+ (n∆τ0 + n∆τ2 )(λ2

1t1 − 2λ1) exp{−λ1t1}dt1. (42)

The average duration of the recorded periods of type 1
will be denoted by T1,cor, and it is given by

T1,cor =
∫ ∞
∆τ

dt1 t1ν1rec(t1)
/∫ ∞

∆τ

dt1ν1rec(t1). (43)
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Fig. 8. Mean duration of fluorescence periods. Simulation: T2

(+++), T1 (×××), T0 (∗∗∗). Theory: T2 (−−−), T1 (−−−−), T0

(....) corrected for averaging window (Ω3 =0.5A3, Ω2 =0.01A3,
zero detuning).

Using equation (42) for ν1rec(t1) one obtains, after an el-
ementary calculation and for ∆τ satisfying ∆τ/T1 � 1,

T1,cor =
1

p10 + p12
+∆τ

{
1 +

p01p10 + p12p21

(p10 + p12)2

}
· (44)

The first term is the ideal theoretical value, T1, and the
remainder is the correction due to non-recorded short pe-
riods. In a similar way one obtains

T0,cor =
1
p01

+∆τ

{
1 +

p10

p01

}
(45)

T2,cor =
1
p21

+∆τ

{
1 +

p12

p21

}
(46)

where again the respective first terms are the ideal values,
T0 and T2.

To compare this with simulated data, obtained with a
moving averaging window of length ∆Tw = 247A−1

3 , we
have taken ∆τ = 2

3∆Tw, as in the previous section, and
have plotted the results together with the simulated data
in Figure 8. The agreement is very good. Quite generally,
for zero detuning the oscillations of T1 and T2 are opposite
in phase to those of ReC3(r), as already noted at the end
of Section 2. As in the case of the double jump rate, T1

and T2 can become constant in r for particular values of
the detuning (different for T1 and T2), and then change to
a behavior in phase with ReC3(r).

The above approach of taking the averaging window
into account works for the following reason. For a single
atom with macroscopic dark periods it is known that the
emission of photons is describable, to high accuracy, by an
underlying two-step telegraph process. For two indepen-
dent atoms with macroscopic dark periods the emissions
are therefore described by an underlying three-step tele-
graph process. For two atoms interacting by a weak dipole-
dipole interaction the actual emission process of photons
should therefore still have, at least approximately, an un-
derlying three-step telegraph process. What we have done
above is replacing the actual emission process by this un-
derlying three-step telegraph process and then incorpo-
rating the averaging window by taking into account the
influence of the overlooked short periods on the statistics.
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5 Discussion of results

We have investigated cooperative effects in the fluores-
cence of two dipole-dipole interacting atoms in a V con-
figuration. One of the excited states of the V configuration
is assumed to be metastable, i.e. with a weak transition
to the ground state. When driven by two lasers, a sin-
gle such configuration exhibits macroscopic dark periods
and periods of fixed intensity, like a two-step telegraph
process. A system of two such atoms exhibits three flu-
orescence types, i.e. dark periods and periods of single
and double intensity, like a three-step telegraph process.
For large atomic distances, when the dipole-dipole inter-
action is negligible, the total fluorescence just consists of
the sum of the individual atomic contributions. We have
shown that for smaller atomic distances the fluorescence
modified by the dipole-dipole interaction which depends
on the atomic distance r. In particular we have, to our
knowledge for the first time, explicitly demonstrated co-
operative effects in the rate of double jumps from a period
of double intensity to a dark period or vice versa, both an-
alytically and by simulations.

By means of an analytical theory we have obtained the
r-dependent transition rates, pij , between the three inten-
sity periods. These were then used to calculate the rate
of double jumps and in the mean period durations T0, T1,
and T2. When comparing with the simulations it turned
out that one had to take into account the averaging win-
dow used for obtaining an intensity curve from the indi-
vidual photon emissions. With this the agreement between
simulation and analytic theory became excellent.

For zero laser detuning, for which the simulations were
performed, the double jump rates are in phase with and
T1 and T2 opposite in phase to ReC3(r). The theoretical
expressions, however, allow general detuning, ∆2, of the
laser which drives the weak transition. It has been shown
that for a particular ∆2, which depends on the other pa-
rameters, the double jump rate becomes constant and, for
larger ∆2, varies opposite in phase to ReC3(r). A sim-
ilar change of characteristic behavior also occurs for T1

and T2, for different values of ∆2 though. The amplitude
of the oscillations with the atomic distance remain in the
same region of magnitude as for zero detuning. As pointed
out in reference [47], a dependence of the oscillations on
ReC3(r) is not unexpected since ReC3(r) affects the de-
cay rates of the excited Dicke states of the combined sys-
tem. But an intuitive argument why the above change of
behavior occurs for increased detuning is at present not
apparent.

We have pointed out in Section 3 that there is another
statistical property of the fluorescence which can serve as
an indicator of the influence of the dipole-dipole interac-
tion and which is probably not too difficult to determine
experimentally. This quantity is the rate with which flu-
orescence periods of definite type occur, in particular the
rate of periods with double intensity. Our theoretical re-
sults show that this rate behaves similar to the double
jump rate, as regards the variation with the atomic dis-
tance, and an example is shown in Figure 9. This quantity
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Fig. 9. The theoretical rate, n2, of double intensity periods per
unit time shows distance-dependent cooperative effects (Ω3 =
0.5A3, Ω2 =0.01A3, zero detuning).

is probably much easier to measure than the double jump
rate or the mean duration T2.

Our theoretical approach can be carried over to other
level configurations and to more than two atoms. For
given parameters the evaluation should be not too dif-
ficult. If, however, one is interested in closed algebraic
expressions the effort will increase considerably with the
number of atoms. In particular, it would be interesting to
apply our approach to the situation of the experiment of
reference [11] with its different level configuration and its
three ions in the trap.

Appendix A: Dipole-dipole interaction
in the Bloch equations

The dipole-dipole interaction enters the Bloch equations
through r-dependent complex coupling constants (cf.
Ref. [47])

Cj =
3Aj

2
eikj1r

[
1

ikj1r
(
1− cos2 ϑj

)
+
(

1
(kj1r)2

− 1
i(kj1r)3

)(
1− 3 cos2 ϑj

) ]
. (A.1)

Here ϑj is the angle between the transition dipole moment
D1j and the line connecting the atoms and kj1 = 2π/λj1,
where λj1 is the wavelength of the j−1 transition for an
atom. For A2 ≈ 0 one has C2 ≈ 0. Thus one can ne-
glect the dipole interaction when one atom is in state |2〉.
The dependence of C3 on r is maximal for ϑ3 = π/2 and
the corresponding C3 is plotted in Figure 10. For atomic
distances greater than about three quarters of a wave
length of the strong transition, |C3| is less than 0.2A3,
but for smaller distances ReC3 approaches A3 and ImC3

diverges.
The reset operationR and Hcond are given by the same

expressions as in reference [47], except for the detuning.
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H0
cond =

~

2i

h
A3

�
|s23〉〈s23|+ |a23〉〈a23|

�
+ (A3 + C3)|s13〉〈s13|+ (A3 − C3)|a13〉〈a13|+ 2A3 |e3〉〈e3|

i
+
~

2

h√
2Ω3

�
|g〉〈s13|+ |s13〉〈e3|

�
+Ω3

�
|s12〉〈s23| − |a12〉〈a23|

�
+ h.c.

i
−~∆2

h
2|e2〉〈e2|+ |s12〉〈s12|+ |a12〉〈a12|+ |s23〉〈s23|+ |a23〉〈a23|

i
(A.4)

H1
cond(Ω2) =

~

2

h√
2Ω2

�
|g〉〈s12|+ |s12〉〈e2|

�
+Ω2

�
|s13〉〈s23|+ |a13〉〈a23|

�
+ h.c.

i
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Fig. 10. The complex dipole-dipole coupling constant C3 for
the strong transition as a function of the atomic distance.

One has

R(ρ)=(A3+ReC3)R+ρR
†
++(A3−ReC3)R−ρR

†
−
(A.2)

where

R+ =
(
S−13 + S−23

)
/
√

2 = |g〉〈s13|+|s13〉〈e3|
+
(
|s12〉〈s23|−|a12〉〈a23|

)
/
√

2,

R− =
(
S−13 − S−23

)
/
√

2 = |g〉〈a13|+|a13〉〈e3|
+
(
|s12〉〈a23|+|a12〉〈s23|

)
/
√

2. (A.3)

The summands in equation (6) are given by

see equations (A.4, A.5) above.

From equation (A.4) one sees that ReC3 changes the
spontaneous decay rates and that ImC3 leads to level
LΩ2ρ = −i[H1

cond(Ω2), ρ]/~ shifts. Therefore, for small r,
the decay rate of |a13〉 approaches 0 in this case and the
large level shifts cause a decrease of fluorescence associ-
ated with the levels |s13〉 and |a13〉.

Appendix B: Calculation of ρ(t0 +∆t) to first
order in Ω2

We write the Bloch equations of equation (5) in the form

ρ̇ = Lρ (B.1)

where the Liouvillean L ≡ L(A3, Ω3,∆2, C3, Ω2), a super-
operator, can be read off from equations (5, A.2, A.5).
One can decompose L as

L = L0 + LΩ2 (B.2)

where L0 = L(A3, Ω3,∆2, C3, 0) and LΩ2ρ =
− i
~ [H1

cond(Ω2), ρ]. We note that H1
cond(Ω2) is Her-

mitian and that L0 can be considered as a Liouvillean
of Bloch equations. Choosing an initial density matrix
ρ(t0) lying in one of the subspaces in equations (2–4) one
obtains, to first order in Ω2,

ρ(t0 +∆t) = eL∆tρ(t0)

= eL0∆tρ(t0)

+
∫ ∆t

0

dτ eL0(∆t−τ)LΩ2eL0τρ(t0), (B.3)

just as with usual quantum mechanical perturbation the-
ory in the interaction picture. Now we use the fact thatL0,
as a Liouvillean of Bloch equations, has an eigenvalue 0
(corresponding to steady states) and eigenvalues with neg-
ative real parts of the order of Ω3 and A3. Therefore, if ∆t
satisfies equation (7), the first term on the right-hand side
of equation (B.3) gives one of the equilibrium states, ρ0,
of L0 given in equations (14–16), to high accuracy, while
the term eL0τρ(t0) under the integrand also rapidly ap-
proaches ρ0. After a change of integration variable one
therefore has to first order in Ω2

ρ(t0 +∆t) = ρ0 +
∫ ∆t

0

dτ eL0τLΩ2ρ
0. (B.4)

It can be shown that LΩ2ρ
0 has no components in the

zero-eigenvalue subspace of L0 [60]. Therefore, the in-
tegrand in equation (B.4) is rapidly damped, and since
∆t � Ω−1

3 , A−1
3 , the upper integration limit can be ex-

tended to infinity. Hence we can write, to first order in Ω2,

ρ(t0 +∆t) = ρ0 +
∫ ∞

0

dτ eL0τLΩ2ρ
0. (B.5)
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A =

2
666666666664

0 −iΩ3/
√

2 0 iΩ3/2 −(A3+ReC3)/
√

2 0 0 (ReC3−A3)/
√

2

−iΩ3/
√

2 (A3+C∗3 )/2 −iΩ3/
√

2 0 iΩ3/2 −(A3+ReC3)/
√

2 0 0

0 −iΩ3/
√

2 A3 0 0 iΩ3/2 0 0

iΩ3/2 0 0 A3/2 −iΩ3/
√

2 0 0 0

0 iΩ3/2 0 −iΩ3/
√

2 (A3+C∗3/2) −iΩ3/
√

2 0 0

0 0 iΩ3/2 0 −iΩ3/
√

2 3A3/2 0 0

0 0 0 0 0 −(A3−ReC3)/
√

2 (A3−C∗3 )/2 −iΩ3/2
0 0 0 0 0 0 −iΩ3/2 (A3−C∗3/2)

3
777777777775

(C.1)

and

a1 =
iΩ2Ω3

4(A2
3 + 2Ω2

3)

�√
2
Ω2

3 +A2
3

Ω3
, iA3, 0,−i

√
2A3, Ω3, 0,−iA3, Ω3

�T
. (C.2)

The vector a2 needed for the evaluation of p21 is easily calculated as

a2 = −iΩ2

.�√
2
�
4Ω3

4 + 4Ω3
2A3

2 +A3
2ReC3

2 + 2A3
3ReC3 +A3

2ImC3
2 +A3

4� 	

×

2
66666666666666666664

Ω3
4 + 2Ω3

2A3
2 +A3

2ReC3
2 + 2A3

3ReC3 +A3
2ImC3

2 +A3
4

iΩ3

√
2A3

�
A3

2 +A3 ReC3 + iImC3A3 +Ω3
2
�

−Ω3
2 (A3 + ReC3 + iImC3)A3

iΩ3 A3

�
−Ω3

2 −A3
2 −A3 ReC3 + iImC3 A3

�
Ω3

2
�
Ω3

2 + 2A3
2
�
/
√

2

iΩ3
3A3

0

Ω3
4/
√

2

3
77777777777777777775

(C.3)

Thus, if ∆t satisfies equation (7) then, to first order in Ω2,
ρ(t0 +∆t) is independent of ∆t, and one has

ρ(t0 +∆t) = ρ0 + (ε−L0)−1LΩ2ρ
0 (B.6)

to first order in Ω2, where the limit ε→ +0 is understood.
Multiplying this by L − ε gives

Lρ(t0 +∆t) = LΩ2(ε−L0)−1LΩ2ρ
0 = O(Ω2

2) (B.7)

which is equation (11). That the transition rates are in-
dependent of the particular choice of ∆t follows from
equations (B.6, 8).

Appendix C: The matrix A

The matrixA and the vector a1 appearing in equation (20)
are easily calculated. They are given by

see equations (C.1–C.3) above.
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